As an ML Engineer, create and improve ML models, collaborate with teams, maintain experimentation pipelines, and stay updated with ML advancements.
Join us at Provectus to be a part of a team that is dedicated to building cutting-edge technology solutions that have a positive impact on society. Our company specializes in AI and ML technologies, cloud services, and data engineering, and we take pride in our ability to innovate and push the boundaries of what's possible.
As an ML Engineer, you’ll be provided with all opportunities for development and growth.
Let's work together to build a better future for everyone!
Requirements:
- Comfortable with standard ML algorithms and underlying math.
- Strong hands-on experience with LLMs in production, RAG architecture, and agentic systems
- AWS Bedrock experience strongly preferred
- Practical experience with solving classification and regression tasks in general, feature engineering.
- Practical experience with ML models in production.
- Practical experience with one or more use cases from the following: NLP, LLMs, and Recommendation engines.
- Solid software engineering skills (i.e., ability to produce well-structured modules, not only notebook scripts).
- Python expertise, Docker.
- English level - strong Intermediate.
- Excellent communication and problem-solving skills.
Will be a plus:
- Practical experience with cloud platforms (AWS stack is preferred, e.g. Amazon SageMaker, ECR, EMR, S3, AWS Lambda).
- Practical experience with deep learning models.
- Experience with taxonomies or ontologies.
- Practical experience with machine learning pipelines to orchestrate complicated workflows.
- Practical experience with Spark/Dask, Great Expectations.
Responsibilities:
- Create ML models from scratch or improve existing models.
- Collaborate with the engineering team, data scientists, and product managers on production models.
- Develop experimentation roadmap.
- Set up a reproducible experimentation environment and maintain experimentation pipelines.
- Monitor and maintain ML models in production to ensure optimal performance.
- Write clear and comprehensive documentation for ML models, processes, and pipelines.
- Stay updated with the latest developments in ML and AI and propose innovative solutions.
Top Skills
AWS
Dask
Docker
Python
Spark
Similar Jobs
Artificial Intelligence • Information Technology • Consulting
As a Middle/Senior ML Engineer, you'll design and enhance ML models, collaborate with teams, develop experimentation frameworks, and ensure model performance.
Top Skills:
Aws BedrockAws SagemakerDaskDockerPythonSpark
Artificial Intelligence • Information Technology • Consulting
The ML Engineer will build and refine ML models, manage experimentation environments, collaborate with teams, and ensure model performance in production.
Top Skills:
Amazon SagemakerAws BedrockAws StackDaskData PipelinesDockerLlmsMl AlgorithmsPythonSpark
Cloud • Security • Software • Cybersecurity • Automation
Lead talent development initiatives at GitLab, shaping the growth and performance of employees through innovative learning strategies and AI integration.
Top Skills:
AILearning Experience PlatformsLearning Management Systems
What you need to know about the Boston Tech Scene
Boston is a powerhouse for technology innovation thanks to world-class research universities like MIT and Harvard and a robust pipeline of venture capital investment. Host to the first telephone call and one of the first general-purpose computers ever put into use, Boston is now a hub for biotechnology, robotics and artificial intelligence — though it’s also home to several B2B software giants. So it’s no surprise that the city consistently ranks among the greatest startup ecosystems in the world.
Key Facts About Boston Tech
- Number of Tech Workers: 269,000; 9.4% of overall workforce (2024 CompTIA survey)
- Major Tech Employers: Thermo Fisher Scientific, Toast, Klaviyo, HubSpot, DraftKings
- Key Industries: Artificial intelligence, biotechnology, robotics, software, aerospace
- Funding Landscape: $15.7 billion in venture capital funding in 2024 (Pitchbook)
- Notable Investors: Summit Partners, Volition Capital, Bain Capital Ventures, MassVentures, Highland Capital Partners
- Research Centers and Universities: MIT, Harvard University, Boston College, Tufts University, Boston University, Northeastern University, Smithsonian Astrophysical Observatory, National Bureau of Economic Research, Broad Institute, Lowell Center for Space Science & Technology, National Emerging Infectious Diseases Laboratories