EnCharge AI Logo

EnCharge AI

AI Research Engineer

Reposted 10 Days Ago
Be an Early Applicant
Remote
28 Locations
Senior level
Remote
28 Locations
Senior level
The role involves optimizing deep learning models for edge AI platforms through quantization techniques and model compression, collaborating with engineers, and staying updated on AI advancements.
The summary above was generated by AI

EnCharge AI is a leader in advanced AI hardware and software systems for edge-to-cloud computing. EnCharge’s robust and scalable next-generation in-memory computing technology provides orders-of-magnitude higher compute efficiency and density compared to today’s best-in-class solutions. The high-performance architecture is coupled with seamless software integration and will enable the immense potential of AI to be accessible in power, energy, and space constrained applications. EnCharge AI launched in 2022 and is led by veteran technologists with backgrounds in semiconductor design and AI systems.

About the Role

EnCharge AI is looking for an experienced AI Research Engineer to optimize deep learning models for deployment on edge AI platforms. You will work on model compression, quantization strategies, and efficient inference techniques to improve the performance of AI workloads. 

Responsibilities

  • Research and develop quantization-aware training (QAT) and post-training quantization (PTQ) techniques for deep learning models.

  • Implement low-bit precision optimizations (e.g., INT8, BF16).

  • Design and optimize efficient inference algorithms for AI workloads, focusing on latency, memory footprint, and power efficiency.

  • Work with frameworks such as PyTorch, ONNX Runtime, and TVM to deploy optimized models.

  • Analyze accuracy trade-offs and develop calibration techniques to mitigate precision loss in quantized models.

  • Collaborate with hardware engineers to optimize model execution for edge devices, and NPUs.

  • Contribute to research on knowledge distillation, sparsity, pruning, and model compression techniques. 

    Benchmark performance across different hardware and software stacks.

  • Stay updated with the latest advancements in AI efficiency, model compression, and hardware acceleration. 

Qualifications

  • Master’s or Ph.D. in Computer Science, Electrical Engineering, or a related field.

  • Strong expertise in deep learning, model optimization, and numerical precision analysis.

  • Hands-on experience with model quantization techniques (QAT, PTQ, mixed precision).

  • Proficiency in Python, C++, CUDA, or OpenCL for performance optimization.

  • Experience with AI frameworks: PyTorch, TensorFlow, ONNX Runtime, TVM, TensorRT, or OpenVINO.

  • Understanding of low-level hardware acceleration (e.g., SIMD, AVX, Tensor Cores, VNNI).

  • Familiarity with compiler optimizations for ML workloads (e.g., XLA, MLIR, LLVM). 

EnchargeAI is an equal employment opportunity employer in the United States.

Top Skills

C++
Cuda
Onnx Runtime
Opencl
Openvino
Python
PyTorch
TensorFlow
Tensorrt
Tvm

Similar Jobs

Mid level
Artificial Intelligence • Edtech
The Machine Learning Engineer will design and develop an AI platform for scientific research, collaborating with teams to enhance automation and data analysis.
Top Skills: AWSAzureDockerElasticsearchGCPGoGrpcHaystackKafkaKubernetesLangchainLlamaindexNeo4JPythonPyTorchRabbitMQRestful ApisRustTensorFlowTypescript
3 Days Ago
Remote
30 Locations
Senior level
Senior level
Artificial Intelligence • Information Technology • Consulting
As a Senior/Staff ML Engineer, you will experiment with training large language models, improve agentic task infrastructure, and utilize data mining techniques.
Top Skills: Ci/CdJaxPythonUnit TestingVersion Control
Yesterday
Easy Apply
Remote
29 Locations
Easy Apply
Senior level
Senior level
Cloud • Security • Software • Cybersecurity • Automation
Lead GitLab's Custom Models team, manage high-performing engineers, and develop AI solutions tailored to customer needs while promoting innovation and collaboration.
Top Skills: AIGitlabMachine LearningMlopsOpen Source Models

What you need to know about the Boston Tech Scene

Boston is a powerhouse for technology innovation thanks to world-class research universities like MIT and Harvard and a robust pipeline of venture capital investment. Host to the first telephone call and one of the first general-purpose computers ever put into use, Boston is now a hub for biotechnology, robotics and artificial intelligence — though it’s also home to several B2B software giants. So it’s no surprise that the city consistently ranks among the greatest startup ecosystems in the world.

Key Facts About Boston Tech

  • Number of Tech Workers: 269,000; 9.4% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Thermo Fisher Scientific, Toast, Klaviyo, HubSpot, DraftKings
  • Key Industries: Artificial intelligence, biotechnology, robotics, software, aerospace
  • Funding Landscape: $15.7 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Summit Partners, Volition Capital, Bain Capital Ventures, MassVentures, Highland Capital Partners
  • Research Centers and Universities: MIT, Harvard University, Boston College, Tufts University, Boston University, Northeastern University, Smithsonian Astrophysical Observatory, National Bureau of Economic Research, Broad Institute, Lowell Center for Space Science & Technology, National Emerging Infectious Diseases Laboratories

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account